ForestClaw : Ghost filling and parallel

communication

Donna Calhoun (Boise State University)

Carsten Burstedde, Univ. of Bonn, Germany

p4est Summer School
July 20 - 25, 2020
Bonn, Germany (Virtual)

p4est interface for ForestClaw

Files that provide the interface between p4est and ForestClaw

* src/forestclaw2d.h - definitions of patch, block, and domain
structs.

* src/forestclaw2d.c - nearest neighbors searches, transformations
for multi-block boundaries, iterators, tagging

* src/fclaw_base.c - option handling utilities

* src/fclaw2d _convenience.c - multi-block domain definitions,
routines for adapting and partitioning the domain

 Additional header files, and a few more files that provide mapping
utilities for cubed sphere, torus, and so on.

ForestClaw is built on top of the routines in these files.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Face neighbor searches

fclaw2d patch relation t
fclaw2d patch face neighbors(fclaw2d domain t * domain,
int blockno, int patchno, int faceno,
int rproc[P4EST HALF], int *rblockno,
int rpatchno[P4EST HALF], int *rfaceno)

{
/* Returns neighbor type (BOUNDARY, HALFSIZE, SAMESIZE, DOUBLESIZE) */
/* Additional output : MPI rank, patch number and block number for
remote patch neighbors. */
}

 This is one of two essential routines needed to build ghost-filling
infrastructure for ForestClaw.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Corner neighbor searches

int

fclaw2d patch corner neighbors (fclaw2d domain t * domain,
int blockno, int patchno, int cornerno,
int *rproc, int *rblockno, int *rpatchno,
int *rcorner,

fclaw2d patch relation t * neighbor size)

/* Returns 0,1 to indicate whether patch has a corner neighbor. */

 (Corner information needed for unsplit finite volume schemes.

 (Corners exchange introduced some new challenges for parallel
communication in p4est.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Filling ghost cells

Assume valid data in the interior of each patch

O

N N
N N N
N\ N\ N\

O

@|0(0|0(0|®|e|®
©@|0(0|0(0|®||®

@) IONN®)
O@O
o1 O
Step | :Fill “coarse grid” cells.
Copy between same size
neighbors; Average from fine grid Step 2 :Interpolate from coarse
to coarse grid. grid to to fine ghost regions, using

coarse grid ghost regions

Unsplit version of finite volume wave-propagation algorithm requires corner exchanges.
Iwo layers of ghost cells needed for limiting waves to avoid unphysical oscillations.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

How are ghost cells filled?

7
ll
. l 7 - /"'.-.
/ w7/
(W /77 7 ’
LSS —

- ”‘II’ L)

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Physical boundary conditions

1. Fill exterior and
interior coarse face
ghost regions

2. Fill exterior coarse
grid corner region

3. Fill fine grid interior
face region

4. Fill exterior corner
ghost regions

Outside physical
domain (exterior
region)

 Two passes of physical boundary conditions are required to fill
corners in the exterior region.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Ghost filling

e |[terators used to iterate over patches

--- Sequencing very important, so multiple iterations over ghost cells are
required.

 For each patch, nearest neighbors are queried.

--- Depending on stage in sequence, face or corner ghost regions may or may
not be filled.

e 20 possible arrangements of a grid and neighbors (not including potential rotations
at multi block boundaries) reduced to 12. Trick : A grid with a double size
neighbor is swapped with its neighbor.

 Routines for ghost-filling at faces are parameterized by direction (0,1), face
(0,1,2,3), and neighbor type, so that only three routines are needed - one for
copying, one for averaging, and one for interpolation.

 Routines for ghost-filling at corners are parameterized by corner number and
neighbor type. Three routines for copying, averaging and interpolation

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

“Context switching”

o “Context switching” allows us to reduce
possible combinations of grid pairings.

 Uses a “swap” routine supplied by p4est
so that face numbers are relative to “You”
and not your neighbor.

Your neighbor

 Works seamlessly with multi-block
boundaries.

Your
neighbor

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Parallel ghost filling

qg(1) at time 0.5000

« Remote patches are created by p4est, and are stored in separate data structure

 Patch routines in ForestClaw are used to re-build essential information in ghost
patches

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Parallel ghost filling algorithm

Lochl|pat¢h

o1 0O

O] O
OO O
paich (Proc 2)
Remote patches on processor An Ilghtwelght indirect exchange IS

before being sent to local processor 3

* Remote patches must have valid coarse grid ghost data so that corners on local
patches can be filled in.

* Requires one communication pass per ghost cell update

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Multiblock boundaries

* Ghost filling at multi-block boundaries is
transparent to the user

* Requires index transformations supplied by
pdest interface

e Straightforward to modify coarse/fine averaging
and interpolation stencils, even at multi-block
boundaries.

[

[

gy
ISR E NN
iy

1

1]
]

e

ik L L L]

AT

IR EE RN
AAAV VT T

Questions?

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

ForestClaw on GPUs

Ported fully unsplit wave propagation algorithm for hyperbolic conservation laws
(implemented in Clawpack) to CUDA.

 Copy time level solution on all patches to single contiguous block of CPU
memory

e Copy contiguous block of CPU memory to the GPU.

e Configure the GPU to assign one 1d thread block to each single ForestClaw
patch

 Divide shared memory equally among thread blocks=patches

e All solution data resides in global memory; shared memory is only used for
temporary data

 CUDA function pointers used to provide custom Riemann solvers.
 Bestto use the 4.x (SOA) data layout

e All core ForestClaw routines, and p4est remain on the CPU. Only the patch
update is ported to the GPU.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

ForestClaw on GPUs

°
14

4000

batch_size

.
14

128
9*megn + 9*maux + mwaves + megn*mwaves

block size
mwork

°
4

&
[B nk\v m
v, Q X
g 9 >y
. Hll
£ 0 © m
X u) &
0 0 == A
~ | e A
QO — A
5 o 0
dm L ﬁ Mlm
Od Ie ~ ._l.”
@ « N A S O
N @ ~ - (@) WJC
- M (V)] (o) G
n o N | — @
S R R © S h.m
I | 25
Me %g Q o a S
eP_ o o T O T
40 a7 V| £¢
PP ~>H VvV aQ
> M~ 2
4Q 0T X S O
Q0 O -H | - ®©
nJ= —~ M o ©c O
Qb W Q &
n n | Qo *
Q Q@ M ™M 2 QO ©
PP £ £ « S N
> - e — N
Q Q T O O ! !

)
0 &)

G0, 40, K0
ACOATOA

<>

3
AN

()

¢

A&

W

<

....... AR
RN
X

O

() (X
A0 OGN Y OO0
A , O OO AOA AR () A
A A AN A A A A A M AR AR A
0 O S T 00 YRR 0 0 S 0 0 0 S

,Qo 0900 A%, V4% 09_00 L) WO 0900 L) 00,,00
OO0 4" 4 AR

% 0

OGED
g 0% %!
A0S0 X
() VORI % R
AR RN ON
RS 90 _
X AR

A
ooooooo% \0% \’o‘o\:‘o\.%ox:oo\’% \:’ \%‘00\:’ Y OALKIDAAIDNAIDNALNAIAAI
O I 0 VY Y 0 N T S 0 0 N A e s
O IO A A A I A IR AL I IO AN
R O O
SIS S KM S S 2
oooo o“oo o“oo o“oc 0 oooo ooooo

!(2zTs uyoleq’T’I)PTIb gutp

One ForestClaw patch per
CUDA block

2
c
-
Q
e
©
e
(7p)
Q
R
O
o
-
-
o
=
©
&
©
c
|
o
o

http://www.forestclaw.org

Thread block - loop over faces

ys = (2*mbc + mx) ; /* Stride */
ifaces x = mx + 2*mbc-1;

ifaces y = my + 2*mbc-1;

num cells = ifaces x*ifaces y;

for(ti = threadIdx.x; ti < num ifaces; ti += blockDim.x)

{

ix = ti % 1faces x; Solve a normal Riemann
iy = ti/ifaces_x; problem at each face;
include 1 ghost cell in

(iy + 1)*ys + (ix + 1); each direction

1 mx : Number of interior grid cells in x
5 = my : Number of interior grid cells in y
mbc : Number of ghost cells
Linear
index
location

Donna Calhoun (Boise State Univ.)

www.forestclaw.org

http://www.forestclaw.org

Shallow water

Timing (Radialdam; CPU)

4 proc(s)

8 proc(s) Bl advance
m ghostfill
Bl regrid

16 proc(s) B patch comm
mam Other

Time (minutes)

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Shallow water

Shallow Water Wave example

Ghost

Ghost (GPU)
Regrid

Regrid (GPU)
Comm

Comm (GPU)
Advance

Advance (GPU)
Other

Other (GPU)
Memcopy (patches)
Memcopy (device)

4 Procs A |

8 Procs A ‘

Time (minutes)

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Shallow water

Shallow Water Wave : One GPU over multi-core CPU

i One GPU/8 CPUs

T

9
1 Walltime (optimal : 16.7)
8 -] B Advance
I B Advance-memcopy
) I
) I
s
©
0 I
&4 I

e

4 8 16
Number of CPU cores (MPI processes)

N OV
1 1
= =---I
N =--

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

One dimensional thread block

Hggg o000 ee
. ooeleoe .
No block 0000000000 eoeoelee ® First pass
synchronization olo/o0o0o0o0oee ooeoelee
required olo o000 0e ooolojoe ® Second pass
. olojooooeeee ooooloe ,
* Typical patch olo0o 0000000 o oo eloe® ® Third pass
sizes are 32x32 olo oo o oeeee o oo oloe
e rrrrrry YYyirr Fourth pass
* Number of olo/oo0o0o000e oooojee
threads per 0|0 00000000 000000 © Fifth pass
vatch : ~128 oloooooeo0ee oooeloe
. ’ oloooooeooee
depending on
shared memory
requirements sooeeolee I____I___I
o o000 o ooooeoeoeeoeeeee
Warp = 32 threads

Solve Riemann problems at x and y faces

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Normal Riemann problems

‘ Thread

e Fach thread

makes a local Global solution
copy of global +- ® data accessed
data and stores it by thread

In shared

memory.

e Fluxes computed Fluxes (_30mputed
Riemann at an x interface

problems stored
In global array

Fluxes computed
at a y interface

Fluxes are computed by solving Riemann problems

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Unsplit algorithm

e Fach transverse

solve stores data
In the same ‘ Thread
global memory
Space Global data
* To avoid data ® stored at cell
collisions with interfaces
other threads
writing to the
same global
memory, four
passes over all S
the global data Results from a
are required, one horizontal normal
for each “color” Riemann problems
e Sync threads are propagated in
between each the vertical direction
pass
Fluxes are computed by solving Riemann problems

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Transverse Riemann problems

e Each transverse
solve stores data

‘ Thread

In the same

global memory Global data

space ® accessed by
e Four more thread

passes over all

the global data
are required

Results from the
vertical Riemann

problems are then
propagated in a
horizontal direction

Fluxes are computed by solving

Riemann problems

Donna Calhoun (Boise State Univ.)

www.forestclaw.org

http://www.forestclaw.org

Unsplit wave propagation

Fully unsplit wave propagation algorithm is implemented in a single
CUDA kernel.

* While more expensive than the dimensionally split version, the
unsplit algorithm may be more suited to AMR.

 The cost in CUDA is that parts of the code that can be done
together are are now split to avoid race conditions. Maybe we
can improve on this by using more global memory?

 Our GPU configuration does not require any synchronization
between thread blocks

* Since all patches are the same size, they can be processed in
large batches (O(1000) per batch)

* All AMR tasks including filling ghost cells is done on the CPU
 (Conservation requires extra memory copy from device.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Shock-bubble problem

» Euler equations : Four field variables per finite volume cell

 Riemann solvers written in CUDA and passed in as CUDA pointers

o 32x32 patch sizes seem optimal

 Ran on 4 node (4 cores per node) cluster with 2 GeForce Titan X (2015) per node
« CPU and GPU results agree to machine precision

Related work :

H. G. Ohannessian, G. Turkiyyah, A. J. Ahmadia, and D. |. Ketcheson, CUDACLAW: A high-
performance programmable GPU framework for the solution of hyperbolic PDEs, arXiv,
1805.08846 (2018).

X. Qin, R. J. LeVeque, M. Motley, “Accelerating wave-propagation algorithms on adaptive mesh with
the graphics processing unit (GPU)”, 2018.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

EuroHack 2018 - Lugano, Switzerland

Scott Aiton (BSU), Andreas Jocksch (CSCS), Xinsheng
Qin (Univ. of Washington), D. Calhoun (BSU), Melody
Shih (NYU)

Sponsored by : NVIDIA + Swiss National Computing Center

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

