
Donna Calhoun (Boise State University)

ForestClaw : Ghost filling and parallel
communication

p4est Summer School
July 20 - 25, 2020

Bonn, Germany (Virtual)

Carsten Burstedde, Univ. of Bonn, Germany

Donna Calhoun (Boise State Univ.)

p4est interface for ForestClaw

www.forestclaw.org

Files that provide the interface between p4est and ForestClaw

• src/forestclaw2d.h - definitions of patch, block, and domain

structs.

• src/forestclaw2d.c - nearest neighbors searches, transformations

for multi-block boundaries, iterators, tagging

• src/fclaw_base.c - option handling utilities

• src/fclaw2d_convenience.c - multi-block domain definitions,

routines for adapting and partitioning the domain

• Additional header files, and a few more files that provide mapping

utilities for cubed sphere, torus, and so on.

ForestClaw is built on top of the routines in these files.

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Face neighbor searches

www.forestclaw.org

fclaw2d_patch_relation_t

 fclaw2d_patch_face_neighbors(fclaw2d_domain_t * domain,

 int blockno, int patchno, int faceno,

 int rproc[P4EST_HALF], int *rblockno,

 int rpatchno[P4EST_HALF], int *rfaceno)

{

 /* Returns neighbor type (BOUNDARY, HALFSIZE, SAMESIZE, DOUBLESIZE) */

 /* Additional output : MPI rank, patch number and block number for

 remote patch neighbors. */

}

• This is one of two essential routines needed to build ghost-filling
infrastructure for ForestClaw.

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.) www.forestclaw.org

Corner neighbor searches
int

fclaw2d_patch_corner_neighbors (fclaw2d_domain_t * domain,

 int blockno, int patchno, int cornerno,

 int *rproc, int *rblockno, int *rpatchno,

 int *rcorner,

 fclaw2d_patch_relation_t * neighbor_size)

{

 /* Returns 0,1 to indicate whether patch has a corner neighbor. */

}

• Corner information needed for unsplit finite volume schemes.

• Corners exchange introduced some new challenges for parallel

communication in p4est.

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Filling ghost cells

www.forestclaw.org

Unsplit version of finite volume wave-propagation algorithm requires corner exchanges.
Two layers of ghost cells needed for limiting waves to avoid unphysical oscillations.

6 D. Calhoun and C. Burstedde

Fig. 2.3. Coarse grid interpolation stencils used to fill in fine grid ghost cell values. The open
circles are the coarse grid values used in the stencil and the filled smaller circles are the fine grid
ghost cell values to be filled in. The shaded fine grid ghost cell regions will be filled in by interpolation
from the coarse grid. The fine grid ghost cells in the lower left corner of the upper fine grid will be
filled in from the coarse grid shown here. As the fine grid in the lower right corner shows, corner
ghost cell regions on the fine grid are also filled in from a corner adjacent coarse grid.

in Clawpack. The user may also supply their own customized boundary condition
routines. In Figure 2.4, we show a general arrangement of fine and coarse grids at a
physical boundary.

After an averaging/copying step and before interpolation, physical boundary con-
ditions are used to fill in all edge and corner coarse grid ghost cells that lie outside the
physical domain. To ensure that corners are properly filled in, the physical boundary
conditions (extrapolation or reflection) are applied along the entire extent of the grid,
not just at faces between interior and exterior grid cells. After applying the physical
boundary conditions to coarse grids, we can interpolate ghost cell values to fine grids,
even those fine grids adjacent to the physical boundary. After interpolation, we then
apply physical boundary conditions a second time, this time to fill in all fine grid
ghost cell values outside the physical domain. While this second application of the
physical boundary conditions will largely duplicate the e↵orts of the first, this second
sweep ensures that fine grid corner ghost cells which lie outside the physical domain
are valid, since in this second sweep, these values will be filled by either extrapolation
or reflection from newly interpolated ghost cell values inside the physical domain.

In Algorithm 1, we illustrate the serial algorithm described above for filling in
ghost cells on the non-overlapping quadtree hierarchy. In this algorithm, we describe
the serial version of the ghost exchange, and assume that at every exchange, we want
to fill ghost cell values on all levels. In later versions, we will incorporate parallel ghost
patch exchanges, and a ghost cell filling procedure that incorporates time interpolated
levels needed for multirate schemes.

Proposition: Assume that the number of interior grid cells in any direction is
at least twice the number of ghost layers in that direction. Also, assume that an
interpolation stencil used to interpolate from a coarse grid to the ghost cells of a
neighboring fine grid can be completely contained within a single quadrant of the

Step 2 : Interpolate from coarse
grid to to fine ghost regions, using
coarse grid ghost regions

Step 1 : Fill “coarse grid” cells.
Copy between same size
neighbors; Average from fine grid
to coarse grid.

Assume valid data in the interior of each patch

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

How are ghost cells filled?

www.forestclaw.org

Copy Average Interpolate

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Physical boundary conditions

www.forestclaw.org

• Two passes of physical boundary conditions are required to fill
corners in the exterior region.

Outside physical
domain (exterior
region)

1. Fill exterior and
interior coarse face
ghost regions

2. Fill exterior coarse
grid corner region

3. Fill fine grid interior
face region

4. Fill exterior corner
ghost regions

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Ghost filling

www.forestclaw.org

• Iterators used to iterate over patches

--- Sequencing very important, so multiple iterations over ghost cells are
required.

• For each patch, nearest neighbors are queried.

--- Depending on stage in sequence, face or corner ghost regions may or may
not be filled.

• 20 possible arrangements of a grid and neighbors (not including potential rotations
at multi block boundaries) reduced to 12. Trick : A grid with a double size
neighbor is swapped with its neighbor.

• Routines for ghost-filling at faces are parameterized by direction (0,1), face
(0,1,2,3), and neighbor type, so that only three routines are needed - one for
copying, one for averaging, and one for interpolation.

• Routines for ghost-filling at corners are parameterized by corner number and
neighbor type. Three routines for copying, averaging and interpolation

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

“Context switching”

www.forestclaw.org

Your neighbor

You

• “Context switching” allows us to reduce
possible combinations of grid pairings.

• Uses a “swap” routine supplied by p4est
so that face numbers are relative to “You”
and not your neighbor.

• Works seamlessly with multi-block
boundaries.

Your
neighbor

You

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Parallel ghost filling

www.forestclaw.org

• Remote patches are created by p4est, and are stored in separate data structure

• Patch routines in ForestClaw are used to re-build essential information in ghost
patches

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Parallel ghost filling algorithm

www.forestclaw.org

• Remote patches must have valid coarse grid ghost data so that corners on local
patches can be filled in.

• Requires one communication pass per ghost cell update

Remote ghost
patch (Proc 2)

Local patch
(Proc 3)

;

Remote ghost patch
(Proc 1)

Remote ghost
patch (Proc 2)

Local patch
(Proc 3)

;

Remote patches on processor
boundary must exchange ghost cells
before being sent to local processor

An lightweight indirect exchange is
required between remote proc 2 and
3

?

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Multiblock boundaries

www.forestclaw.org

• Ghost filling at multi-block boundaries is
transparent to the user

• Requires index transformations supplied by
p4est interface

• Straightforward to modify coarse/fine averaging
and interpolation stencils, even at multi-block
boundaries.

Questions?

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

ForestClaw on GPUs

www.forestclaw.org

Ported fully unsplit wave propagation algorithm for hyperbolic conservation laws
(implemented in Clawpack) to CUDA.

• Copy time level solution on all patches to single contiguous block of CPU
memory

• Copy contiguous block of CPU memory to the GPU.

• Configure the GPU to assign one 1d thread block to each single ForestClaw
patch

• Divide shared memory equally among thread blocks=patches

• All solution data resides in global memory; shared memory is only used for
temporary data

• CUDA function pointers used to provide custom Riemann solvers.

• Best to use the 4.x (SOA) data layout

• All core ForestClaw routines, and p4est remain on the CPU. Only the patch
update is ported to the GPU.

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

ForestClaw on GPUs

www.forestclaw.org

block_size = 128; batch_size = 4000;
mwork = 9*meqn + 9*maux + mwaves + meqn*mwaves;
bytes_per_thread = sizeof(double)*mwork;
bytes = bytes_per_thread*block_size;

dim3 block(block_size,1,1);
dim3 grid(1,1,batch_size);

claw_flux2<<<grid,block,bytes>>>(mx,my,meqn,..)

One ForestClaw patch per
CUDA block

~4000 patches in a batch
~128 threads per block

1d thread blocks
3d grid

d
i
m
3

g
r
i
d
(
1
,
1
,
b
a
t
c
h
_
s
i
z
e
)
;

Patch layout with
valid ghost cell data

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

ys = (2*mbc + mx); /* Stride */
ifaces_x = mx + 2*mbc-1;
ifaces_y = my + 2*mbc-1;
num_cells = ifaces_x*ifaces_y;

for(ti = threadIdx.x; ti < num_ifaces; ti += blockDim.x)
{
 ix = ti % ifaces_x;
 iy = ti/ifaces_x;

 I = (iy + 1)*ys + (ix + 1);

Thread block - loop over faces

www.forestclaw.org

mx : Number of interior grid cells in x
my : Number of interior grid cells in y
mbc : Number of ghost cells

I

Linear
index

location

Solve a normal Riemann
problem at each face;
include 1 ghost cell in
each direction

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Shallow water

www.forestclaw.org

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Shallow water

www.forestclaw.org

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Shallow water

www.forestclaw.org

One GPU/8 CPUs

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

One dimensional thread block

www.forestclaw.org

Solve Riemann problems at x and y faces

First pass

Second pass

Third pass

Fourth pass

Fifth pass

Warp = 32 threads

• No block
synchronization
required

• Typical patch
sizes are 32x32

• Number of
threads per
patch : ~128,
depending on
shared memory
requirements

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Normal Riemann problems

www.forestclaw.org

Thread

Global solution
data accessed
by thread

Fluxes computed
at an x interface

Fluxes computed
at a y interface

•Each thread
makes a local
copy of global
data and stores it
in shared
memory.

•Fluxes computed
Riemann
problems stored
in global array

Fluxes are computed by solving Riemann problems

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Unsplit algorithm

www.forestclaw.org

Thread

Global data
stored at cell
interfaces

Fluxes are computed by solving Riemann problems

Results from a
horizontal normal
Riemann problems
are propagated in
the vertical direction

•Each transverse
solve stores data
in the same
global memory
space

•To avoid data
collisions with
other threads
writing to the
same global
memory, four
passes over all
the global data
are required, one
for each “color”

•Sync threads
between each
pass

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Transverse Riemann problems

www.forestclaw.org

Thread

Global data
accessed by
thread

Fluxes are computed by solving Riemann problems

Results from the
vertical Riemann
problems are then
propagated in a
horizontal direction

•Each transverse
solve stores data
in the same
global memory
space

•Four more
passes over all
the global data
are required

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Unsplit wave propagation

www.forestclaw.org

Fully unsplit wave propagation algorithm is implemented in a single
CUDA kernel.

• While more expensive than the dimensionally split version, the

unsplit algorithm may be more suited to AMR.

• The cost in CUDA is that parts of the code that can be done

together are are now split to avoid race conditions. Maybe we
can improve on this by using more global memory?

• Our GPU configuration does not require any synchronization
between thread blocks

• Since all patches are the same size, they can be processed in
large batches (O(1000) per batch)

• All AMR tasks including filling ghost cells is done on the CPU

• Conservation requires extra memory copy from device.

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Shock-bubble problem

www.forestclaw.org

• Euler equations : Four field variables per finite volume cell

• Riemann solvers written in CUDA and passed in as CUDA pointers

• 32x32 patch sizes seem optimal

• Ran on 4 node (4 cores per node) cluster with 2 GeForce Titan X (2015) per node

• CPU and GPU results agree to machine precision

Related work :

H. G. Ohannessian, G. Turkiyyah, A. J. Ahmadia, and D. I. Ketcheson, CUDACLAW: A high-

performance programmable GPU framework for the solution of hyperbolic PDEs, arXiv,
1805.08846 (2018).

X. Qin, R. J. LeVeque, M. Motley, “Accelerating wave-propagation algorithms on adaptive mesh with
the graphics processing unit (GPU)”, 2018.

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

EuroHack 2018 - Lugano, Switzerland

www.forestclaw.org

Sponsored by : NVIDIA + Swiss National Computing Center

Scott Aiton (BSU), Andreas Jocksch (CSCS), Xinsheng
Qin (Univ. of Washington), D. Calhoun (BSU), Melody

Shih (NYU)

http://www.forestclaw.org

