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p4est interface for ForestClaw

www.forestclaw.org

Files that provide the interface between p4est and ForestClaw

• src/forestclaw2d.h - definitions of patch, block, and domain 

structs.

• src/forestclaw2d.c - nearest neighbors searches, transformations 

for multi-block boundaries, iterators, tagging

• src/fclaw_base.c - option handling utilities

• src/fclaw2d_convenience.c - multi-block domain definitions, 

routines for adapting and partitioning the domain

• Additional header files, and a few more files that provide mapping 

utilities for cubed sphere, torus, and so on. 

ForestClaw is built on top of the routines in these files. 

http://www.forestclaw.org
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Face neighbor searches
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fclaw2d_patch_relation_t 

    fclaw2d_patch_face_neighbors(fclaw2d_domain_t * domain,

                                 int blockno, int patchno, int faceno,

                                 int rproc[P4EST_HALF], int *rblockno,

                                 int rpatchno[P4EST_HALF], int *rfaceno)

{

    /* Returns neighbor type (BOUNDARY, HALFSIZE, SAMESIZE, DOUBLESIZE) */ 

       

    /* Additional output : MPI rank, patch number and block number for 

       remote patch neighbors. */

}

• This is one of two essential routines needed to build ghost-filling 
infrastructure for ForestClaw. 

http://www.forestclaw.org
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Corner neighbor searches
int

fclaw2d_patch_corner_neighbors (fclaw2d_domain_t * domain,

                                int blockno, int patchno, int cornerno,

                                int *rproc, int *rblockno, int *rpatchno,

                                int *rcorner,

                                fclaw2d_patch_relation_t * neighbor_size)

{ 

    /* Returns 0,1 to indicate whether patch has a corner neighbor. */

}

• Corner information needed for unsplit finite volume schemes. 

• Corners exchange introduced some new challenges for parallel 

communication in p4est. 

http://www.forestclaw.org
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Filling ghost cells

www.forestclaw.org

Unsplit version of finite volume wave-propagation algorithm requires corner exchanges.  
Two layers of ghost cells needed for limiting waves to avoid unphysical oscillations. 

6 D. Calhoun and C. Burstedde

Fig. 2.3. Coarse grid interpolation stencils used to fill in fine grid ghost cell values. The open
circles are the coarse grid values used in the stencil and the filled smaller circles are the fine grid
ghost cell values to be filled in. The shaded fine grid ghost cell regions will be filled in by interpolation
from the coarse grid. The fine grid ghost cells in the lower left corner of the upper fine grid will be
filled in from the coarse grid shown here. As the fine grid in the lower right corner shows, corner
ghost cell regions on the fine grid are also filled in from a corner adjacent coarse grid.

in Clawpack. The user may also supply their own customized boundary condition
routines. In Figure 2.4, we show a general arrangement of fine and coarse grids at a
physical boundary.

After an averaging/copying step and before interpolation, physical boundary con-
ditions are used to fill in all edge and corner coarse grid ghost cells that lie outside the
physical domain. To ensure that corners are properly filled in, the physical boundary
conditions (extrapolation or reflection) are applied along the entire extent of the grid,
not just at faces between interior and exterior grid cells. After applying the physical
boundary conditions to coarse grids, we can interpolate ghost cell values to fine grids,
even those fine grids adjacent to the physical boundary. After interpolation, we then
apply physical boundary conditions a second time, this time to fill in all fine grid
ghost cell values outside the physical domain. While this second application of the
physical boundary conditions will largely duplicate the e↵orts of the first, this second
sweep ensures that fine grid corner ghost cells which lie outside the physical domain
are valid, since in this second sweep, these values will be filled by either extrapolation
or reflection from newly interpolated ghost cell values inside the physical domain.

In Algorithm 1, we illustrate the serial algorithm described above for filling in
ghost cells on the non-overlapping quadtree hierarchy. In this algorithm, we describe
the serial version of the ghost exchange, and assume that at every exchange, we want
to fill ghost cell values on all levels. In later versions, we will incorporate parallel ghost
patch exchanges, and a ghost cell filling procedure that incorporates time interpolated
levels needed for multirate schemes.

Proposition: Assume that the number of interior grid cells in any direction is
at least twice the number of ghost layers in that direction. Also, assume that an
interpolation stencil used to interpolate from a coarse grid to the ghost cells of a
neighboring fine grid can be completely contained within a single quadrant of the

Step 2 : Interpolate from coarse 
grid to  to fine ghost regions, using 
coarse grid ghost regions

Step 1 : Fill “coarse grid” cells.  
Copy between same size 
neighbors;  Average from fine grid 
to coarse grid. 

Assume valid data in the interior of each patch

http://www.forestclaw.org
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How are ghost cells filled?
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Copy Average Interpolate

http://www.forestclaw.org
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Physical boundary conditions
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• Two passes of physical boundary conditions are required to fill 
corners in the exterior region.  

Outside physical 
domain (exterior 
region)

1. Fill exterior and 
interior coarse face 
ghost regions 

2. Fill exterior coarse 
grid corner region 

3. Fill fine grid interior 
face region 

4. Fill exterior corner 
ghost regions

http://www.forestclaw.org
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Ghost filling

www.forestclaw.org

• Iterators used to iterate over patches


--- Sequencing very important, so multiple iterations over ghost cells are 
required. 


• For each patch, nearest neighbors are queried. 


--- Depending on stage in sequence, face or corner ghost regions may or may 
not be filled. 


• 20 possible arrangements of a grid and neighbors (not including potential rotations 
at multi block boundaries) reduced to 12.   Trick : A grid with a double size 
neighbor is swapped with its neighbor.  


• Routines for ghost-filling at faces are parameterized by direction (0,1), face 
(0,1,2,3), and neighbor type, so that only three routines are needed - one for 
copying, one for averaging, and one for interpolation. 


• Routines for ghost-filling at corners are parameterized by corner number and 
neighbor type.  Three routines for copying, averaging and interpolation

http://www.forestclaw.org
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“Context switching”
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Your neighbor

You

• “Context switching” allows us to reduce 
possible combinations of grid pairings.  


• Uses a “swap” routine supplied by p4est 
so that face numbers are relative to “You” 
and not your neighbor.


• Works seamlessly with multi-block 
boundaries. 

Your 
neighbor

You

http://www.forestclaw.org
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Parallel ghost filling
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• Remote patches are created by p4est, and are stored in separate data structure


• Patch routines in ForestClaw are used to re-build essential information in ghost 
patches 

http://www.forestclaw.org
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Parallel ghost filling algorithm
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• Remote patches must have valid coarse grid ghost data so that corners on local 
patches can be filled in.


• Requires one communication pass per ghost cell update

Remote ghost
patch (Proc 2)

Local patch
(Proc 3)

;

Remote ghost patch
(Proc 1)

Remote ghost
patch (Proc 2)

Local patch
(Proc 3)

;

Remote patches on processor 
boundary must exchange ghost cells 
before being sent to local processor

An lightweight indirect exchange is 
required between remote proc 2 and 
3

?

http://www.forestclaw.org
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Multiblock boundaries
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• Ghost filling at multi-block boundaries is 
transparent to the user


• Requires index transformations supplied by 
p4est interface


• Straightforward to modify coarse/fine averaging 
and interpolation stencils, even at multi-block 
boundaries. 

Questions? 

http://www.forestclaw.org
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ForestClaw on GPUs
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Ported fully unsplit wave propagation algorithm for hyperbolic conservation laws 
(implemented in Clawpack) to CUDA.  


• Copy time level solution on all patches to single contiguous block of CPU 
memory  


• Copy contiguous block of CPU memory to the GPU.  


• Configure the GPU to assign one 1d thread block to each single ForestClaw 
patch


• Divide shared memory equally among thread blocks=patches


• All solution data resides in global memory;  shared memory is only used for 
temporary data


• CUDA function pointers used to provide custom Riemann solvers. 


• Best to use the 4.x (SOA)  data layout


• All core ForestClaw routines, and p4est remain on the CPU.  Only the patch 
update is ported to the GPU.

http://www.forestclaw.org
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ForestClaw on GPUs
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block_size = 128;  batch_size = 4000; 
mwork = 9*meqn + 9*maux + mwaves + meqn*mwaves; 
bytes_per_thread = sizeof(double)*mwork; 
bytes = bytes_per_thread*block_size; 

dim3 block(block_size,1,1);   
dim3 grid(1,1,batch_size); 

claw_flux2<<<grid,block,bytes>>>(mx,my,meqn,..)

One ForestClaw patch per 
CUDA block

~4000 patches in a batch 
~128 threads per block

1d thread blocks 
3d grid
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Patch layout with 
valid ghost cell data

http://www.forestclaw.org


Donna Calhoun (Boise State Univ.)

ys = (2*mbc + mx);   /* Stride */ 
ifaces_x = mx + 2*mbc-1; 
ifaces_y = my + 2*mbc-1; 
num_cells = ifaces_x*ifaces_y; 

for(ti = threadIdx.x; ti < num_ifaces; ti += blockDim.x) 
{ 
  ix = ti % ifaces_x; 
  iy = ti/ifaces_x; 

  I = (iy + 1)*ys + (ix + 1);  
    ....

Thread block - loop over faces

www.forestclaw.org

mx  : Number of interior grid cells in x 
my  : Number of interior grid cells in y 
mbc : Number of ghost cells

I

Linear 
index 

location

Solve a normal Riemann 
problem at each face;  
include 1 ghost cell in 
each direction

http://www.forestclaw.org


Donna Calhoun (Boise State Univ.)

Shallow water
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http://www.forestclaw.org
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Shallow water
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http://www.forestclaw.org
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Shallow water
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One GPU/8 CPUs

http://www.forestclaw.org
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One dimensional thread block
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Solve Riemann problems at x and y faces

First pass

Second pass

Third pass

Fourth pass

Fifth pass

Warp = 32 threads

•  No block 
synchronization 
required


• Typical patch 
sizes are 32x32


• Number of 
threads per 
patch : ~128, 
depending on 
shared memory 
requirements

http://www.forestclaw.org
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Normal Riemann problems
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Thread

Global solution 
data accessed 
by thread

Fluxes computed 
at an x interface

Fluxes computed 
at a y interface

•Each thread 
makes a  local 
copy of global 
data and stores it 
in shared 
memory.  


•Fluxes computed 
Riemann 
problems stored 
in global array

Fluxes are computed by solving Riemann problems

http://www.forestclaw.org
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Unsplit algorithm
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Thread

Global data 
stored at cell 
interfaces

Fluxes are computed by solving Riemann problems

Results from a 
horizontal normal 
Riemann problems 
are propagated in 
the vertical direction

•Each transverse 
solve stores data 
in the same 
global memory 
space


•To avoid data 
collisions with 
other threads 
writing to the 
same global 
memory, four 
passes over all 
the global data 
are required, one 
for each “color”


•Sync threads 
between each 
pass

http://www.forestclaw.org
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Transverse Riemann problems
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Thread

Global data 
accessed by 
thread

Fluxes are computed by solving Riemann problems

Results from the 
vertical  Riemann 
problems are then 
propagated in a 
horizontal  direction

•Each transverse 
solve stores data 
in the same 
global memory 
space


•Four more 
passes over all 
the global data 
are required

http://www.forestclaw.org
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Unsplit wave propagation
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Fully unsplit wave propagation algorithm is implemented in a single 
CUDA kernel. 

• While more expensive than the dimensionally split version, the 

unsplit algorithm may be more suited to AMR. 

• The cost in CUDA is that parts of the code that can be done 

together are are now split to avoid race conditions.   Maybe we 
can improve on this by using more global memory? 

• Our GPU configuration does not require any synchronization 
between thread blocks


• Since all patches are the same size, they can be processed in 
large batches (O(1000) per batch)


• All AMR tasks including filling ghost cells is done on the CPU

• Conservation requires extra memory copy from device.

http://www.forestclaw.org
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Shock-bubble problem
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• Euler equations : Four field variables per finite volume cell

• Riemann solvers written in CUDA and passed in as CUDA pointers

• 32x32 patch sizes seem optimal

• Ran on 4 node (4 cores per node) cluster with 2 GeForce Titan X (2015) per node

• CPU and GPU results agree to machine precision

Related work :

H. G. Ohannessian, G. Turkiyyah, A. J. Ahmadia, and D. I. Ketcheson, CUDACLAW: A high-

performance programmable GPU framework for the solution of hyperbolic PDEs, arXiv, 
1805.08846 (2018).


X. Qin, R. J. LeVeque, M. Motley, “Accelerating wave-propagation algorithms on adaptive mesh with 
the graphics processing unit (GPU)”, 2018.

http://www.forestclaw.org
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EuroHack 2018 - Lugano, Switzerland
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Sponsored by : NVIDIA + Swiss National Computing Center 

Scott Aiton (BSU), Andreas Jocksch (CSCS), Xinsheng 
Qin (Univ. of Washington), D. Calhoun (BSU), Melody 

Shih (NYU) 

http://www.forestclaw.org

