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In the “clawpatch” patch (used for 
finite volume solvers), each p4est 
quadrant is occupied by a  single 
logically Cartesian  grid, stored in 
contiguous memory, including ghost 
cells. 

Parallel, multiblock AMR 3

Fig. 2.2. Three 8 ⇥ 8 computational grids shown in levels ` � 1, ` and ` + 1. Solution data
in each grid are stored in contiguous 12⇥ 12 arrays of 82 interior mesh cells (shown in white) and
two layers of ghost cells (shown in shaded regions). The interior regions of the grids in a quadtree
layout do not overlap and so form a partition of the computational domain. Thick lines indicate
quadrant (grid) boundaries.

ghost cell regions, so that a grid with 82 interior cells and two layers of ghost cells
stores solution data in a contiguous array of 12⇥12 mesh cells (with one or more fields
per grid cell). The interiors of computational grids do not overlap, but the ghost cell
region of one grid will overlap with the interior of its face-adjacent and corner adjacent
neighbors. In a ForestClaw, values for the interior dimensions and number of ghost
cell layers are the same for all grids, e↵ectively enforcing a constant 2:1 refinement
ratio between grid levels. The resolution of a particular grid is determined by the size
of the quadrant it occupies, so a grid occupying a level ` quadrant has 2` times the
resolution of the same grid in a level 0 quadrant.

Informally we will refer to “quadrants” and “grids” interchangeably. Fine grids
are those that occupy quadrants at higher levels; coarse grids occupy quadrants at
levels with numeric values closer to 0. A grid can be both a “coarse” grid and a “fine
grid, depending on the context. When describing numerical schemes, it will also be
convenient to refer to the border surrounding the interior grid cells (i.e. the quadrant
boundaries) as the grid boundary, even though this boundary does not enclose the
ghost cell regions. This boundary consists of four edges separating the interior grid
cells from the exterior ghost cell cell regions. And when the context is clear, the “size”
of a grid should be loosely understood to mean the size of the quadrant occupied by
that grid, although there will also be occasion to describe a grid using its (fixed)
interior dimensions, e.g. an 8⇥8 grid. It is also informally understood that the use of
the term “grid” often refers to the contiguous array of solution values associated with
the grid, and not just the geometric metadata needed to describe the grid. In this
context, a “coarse grid solution” or a “fine grid solution” is the solution on a coarser or
finer grid. In the current version of ForestClaw, we store grids (and solution values)
only for those quadrants that make up the final partitioning of the domain. If, during
refinement, a coarse quadrant is subdivided into four finer quadrants, the storage for
the coarse grid solution and any coarse grid metadata is deleted and storage for a finer
grid is allocated in each of the four finer quadrants. See Figure 2.2 for an illustration
of grids and quadrants.

There are several advantages to the tree based refinement. One, the numerical

ForestClaw is a p4est PDE layer.

• Written mostly in object-oriented C

• Core routines are agnostic as to 

patch data, solvers used, etc. 

• Most aspects of the PDE layer, 

including type of patch used, 
solver, interpolation and averaging, 
ghost-filling, can be customized


• Support for legacy codes

• Several extensions include 

Clawpack extension, GeoClaw, 
Ash3d and others. 


• FV solvers and meshes are 
available as applications.

http://www.forestclaw.org
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• Enable users to port existing Cartesian grid codes to highly scalable, parallel 
adaptive environment. 


• Starting point : Users are experts in their application and solvers, and have put 
much thought and work into developing their codes


• To the greatest extent possible, users should be able to leverage any existing 
code they have already developed.  Encourage re-use of legacy Cartesian codes. 


• If the programming paradigm is clear enough, users can reason about their 
interaction with the code, and can be involved in technical details of getting their 
application running. 


• Most users are not experts in computer science, nor do they want to be.  So 
language constructs need to be reasonably simple, i.e. limit use of C++.  
Emphasize procedures over objects.   Don’t try to invent DSLs that are 
meaningless to everyone but the developer. 


• Encourage mixed programming, i.e. Fortran+C.  

http://www.forestclaw.org
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Paradigms 


• Iterators 


• Callbacks


• Virtual tables


• Encapsulated extension libraries for defining how patches get updated, and how 
data within a patch is stored. 

Extension libraries


• A solver library can update a solution on a single grid, or, in the case of an 
elliptic solver, return a solution on the mesh hierarchy.  Solver libraries are 
typically wrappers for legacy code.


• Solvers work together with patch libraries.


• Configuration parameters for solvers and patch types (cell-centered, node 
centered, etc) are contained within the library, 


• Composibility : Libraries are design not to clash with each other, so multiple 
versions of the same library can be compiled together for selection at run-
time. 

http://www.forestclaw.org
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We have an existing Cartesian grid solver

• Let’s assume it is an explicit time stepping solver. 

• Furthermore, we have a time stepping loop that looks 

something like this : 


• The time step may depend on a CFL constraint, or some other 
constraint needed for stability.  


• What does this loop look like on an AMR hierarchy? 

• Focus on the single time step


Choose a time step dt, 
for k = 1, M
   Take a single time step
   Output results 
   Compute some diagnostics

http://www.forestclaw.org
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level 2 level 3 level 5

• For hyperbolic problems, the time step is often limited by cell size. 


• Global time stepping : One time step  for all grids. 

• Local time stepping : Time step size depends on cell size

• Benefits of local time stepping depend on the problem

Δt

http://www.forestclaw.org
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www.forestclaw.org

t

t+ (�t)7

t+ (�t)4

Level 4 Level 5 Level 6 Level 7

• Arrows of the same color indicate recursive calls

• Blue boxes indicate parallel ghost cell exchanges
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Algorithm 3 Multirate update algorithm. Multirate single step, single stage,
explicit scheme for updating the solution from t to (�t)`min for stable coarse grid
time step (�t)`min = 2`max�`min(�t)`max .

Require: Grids at all levels at time t must have valid ghost cells values.
for k = 1 to 2`max�`min do

advance solution(`max, (�t)`max)
if multirate then

if k < 2`max�`min then

Find largest integer p � 0 such that 2p divides k.
`time = `max � p� 1
update ghost(`time + 1)

end if

else

update ghost(`min)
end if

end for

update ghost(`min).

procedure advance solution(level = `, dt stable = �t)
for all grids g on level ` do

Update solution Q
n+1 = Q

n + �t F (Qn
, tn).

end for

if ` > `min then

if multirate then

if levels ` and `� 1 are time synchronized then

advance solution(`� 1, 2�t)
time interpolate(`� 1,t + 2�t)

end if

else

advance solution(`� 1,�t)
end if

end if

end procedure

This solution is stored, along with the current and new time step, and used in ghost
filling routines whenever a finer level `+1 needs ghost values at time level t+(�t)f =
t + (�t)c/2. A basic optimization that can be made to compute time interpolated
values only on grids at coarse/fine boundaries, and only in the narrow boundary region
of each grid. Since these time interpolated solutions will only be used to interpolate
ghost values to the finer level ghost regions, only the layer of ghost cells nearest the
grid boundary, and two layers of interior cells need to be time interpolated.

When run on multiple processors, the algorithm presented in Algorithm 3 requires
minor modifications to account for the fact that not every processor will have grids on
all levels. To describe these modifications, we describe three sets of level intervals. The
user will specify a minimum and maximum level, which we refer to as the “user” `min

and `max interval [`min, `max]user. This interval will be used as the reference level, for
example, when specifying an initial time step. Then, for a particular run, depending
on refinement criteria and threshold parameters the actual minimum level seen on any
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Recursive advance, followed 
by a time interpolation

Advance solution on finest level

Intermediate synchronization

Global time stepping

Multirate

http://www.forestclaw.org
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Single coarse grid time step
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double fclaw2d_advance_all_levels(fclaw2d_global_t *glob,

     double t, double dt) {

    initialize_timestep_counters(glob,&ts_counter,t,dt);

    for(int nf = 0; nf < ts_counter[maxlevel].total_steps; nf++)

       double maxcfl = 

            advance_level(glob,maxlevel,nf,maxcfl,ts_counter);        

}
double advance_level(fclaw2d_global_t *glob, int level, int nf, 

              double maxcfl, fclaw2d_timestep_counters* ts_counter) {

     double cfl = fclaw2d_update_single_step(glob,level,t,dt);

     maxcfl = fmax(maxcfl,cfl);

     if (level > domain->local_minlevel) {

         double dtc = ts_counter[level-1].dt_step;

         double cfl = fclaw2d_update_single_step(glob,level-1,t,dtc);

         maxcfl = fmax(maxcfl,cfl);

     }

}

• Time step counter manages global/local time stepping

http://www.forestclaw.org
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double fclaw2d_update_single_step(fclaw2d_global_t *glob, int level,

                                  double t, double dt) {

    /* Store time step, t in struct ss_data */

    fclaw2d_global_iterate_level(glob, level, cb_single_step, &ss_data);

}

• A “functional iterator” which loops over all grids on a level.

• Iterator interacts with p4est data structure to extract quads. 

• The “callback function” is called for each grid.  

• This iterator is used in many contexts, not just time stepping

http://www.forestclaw.org
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Iterators and call-back functions
void cb_single_step(fclaw2d_domain_t *domain,

                    fclaw2d_patch_t *patch,

                    int blockno, int patch, void *user) {

   /* Extract dt, t, other data from `user` struct */

   double maxcfl = 

       fclaw2d_patch_single_step_update(glob, patch, blockno, patchno,

                                        t, dt, &ss_data->buffer_data);

   /* Compare maxcfl to global max;  store in user data */

}

• Call-back function called for each patch on processor

• User solver is called from fclaw2d_patch_single_step_update. 
• Assumes patch can be updated independently from other patches 

(wouldn’t be appropriate for an elliptic solver, for example) 
• The patch struct stores solution data in virtualized patch types 

(think: void*).  

http://www.forestclaw.org
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Virtual tables
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double fclaw2d_patch_single_step_update(fclaw2d_global_t *glob,

                                        fclaw2d_patch_t *patch,

                                        int blockno, int patchno,

                                        double t, double dt, void* user)

{

fclaw2d_patch_vtable_t *patch_vt = fclaw2d_patch_vt();

FCLAW_ASSERT(patch_vt->single_step_update != NULL);

    double maxcfl = 

          patch_vt->single_step_update(glob, patch, blockno, patchno, 

                                       t, dt, user);

    return maxcfl;

}

• Virtual tables are structs that store typedef’ed function pointers.  


• Facilitates polymorphism.


• Virtual tables are accessible from anywhere; no need to create objects. 

http://www.forestclaw.org
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Virtual tables

www.forestclaw.org

struct fclaw2d_patch_vtable

{

    /* Creating/deleting/building patches */

    fclaw2d_patch_new_t                   patch_new;

    fclaw2d_patch_delete_t                patch_delete;

   ....

    /* Solver functions */

    fclaw2d_patch_initialize_t            initialize;

    fclaw2d_patch_physical_bc_t           physical_bc;

    fclaw2d_patch_single_step_update_t    single_step_update;

  ....

}

• Structs containing virtual tables are closest thing to an “object” in ForestClaw


• Pointers are set by solvers, patch libraries (more on that later), or the user.


• Function pointer signature is hard-wired. 

http://www.forestclaw.org
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Virtual tables
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void fc2d_clawpack46_solver_initialize()

{

fclaw2d_patch_vtable_t*          patch_vt = fclaw2d_patch_vt(); 

    fc2d_clawpack46_vtable_t*  claw46_vt = clawpack46_vt_init(); 

    ...

/* These could be over-written by user specific settings */

patch_vt->initialize                     = clawpack46_qinit;

patch_vt->setup                          = clawpack46_setaux;  

patch_vt->physical_bc                    = clawpack46_bc2;

patch_vt->single_step_update             = clawpack46_update;

   ...

   claw46_vt->is_set = 1;

}

• These functions operate on a single patch only


• Encapsulated solver libraries assign values to function pointers. 


• Users can easily swap in their own customized instances. 

http://www.forestclaw.org
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Solver libraries
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static

double clawpack46_update(fclaw2d_global_t *glob, fclaw2d_patch_t *patch,

                         int blockno, int patch, double t, double dt,

                         void* user) {

   fc2d_clawpack46_vtable_t*  claw46_vt = fc2d_clawpack46_vt();

   ....

   claw46_vt->b4step2(glob, patch, blockno, patchno, dt);

   double maxcfl = clawpack46_step2(glob, patch, blockno, patch, t, dt);

   claw46_vt->src2(glob, patch, blockno, patchno, t, dt);

  

   return maxcfl;

}

• Explicit solver library only sees data on individual patches. 


• Solver library can have its own virtual table.

http://www.forestclaw.org
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Solver libraries
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double clawpack46_step2(fclaw2d_global_t *glob, fclaw2d_patch_t *patch,

int blockno, int patchno, double t, double dt) {

    ...

    int mx, my, mbc;

    double xlower, ylower, dx, dy;

fclaw2d_clawpatch_grid_data(glob, patch,&mx,&my, &mbc, 

                                &xlower, &ylower, &dx, &dy);

    double *qold, meqn;

fclaw2d_clawpatch_soln_data(glob, patch, &qold, &meqn);

    ...

CLAWPACK46_STEP2_WRAP(&maxm, &meqn, &maux, &mbc, clawopt->method, ..., 

      claw46_vt->fort_rpt2, claw46_vt->flux2, block_corner_count, &ierror);

    return maxcfl;

}

• Call-backs wrap legacy code. 

• Patch data stored in an object that knows about data layout on a grid.  For 

Clawpack, this is stored in a cell-centered “Clawpatch”.  

Legacy code 
called here

http://www.forestclaw.org
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• Time stepping on AMR grids is a niche area in a much larger industry 
devoted to multi-rate time stepping.   (A. Sandu, Virginia Tech, D. Ketcheson 
(KAUST) and many others)


• References to early papers out of LBL offer best description of how local 
time stepping for AMR is done. See for example, papers by LBL group on 
projection methods (Almgren, Bell, Colella and others). 


• Most time stepping assumes single step method;  multi-step methods are 
more challenging (and not widely used by AMR community) when meshes 
are dynamically evolving


• A few more recent papers describe multi-stage methods, but little is known 
about how best to implement additive RK methods on AMR meshes. 


• Classic problem : Experts in time stepping do not routinely develop ideas in 
complex AMR codes.  Exception : C. Woodward (LLNL) works closely with 
AMReX team. 

http://www.forestclaw.org
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• Solver libraries encapsulate details of a specific solver.  These 
interact with ForestClaw core routines mainly through an update 
function.  


• To update, however, solvers need patch meta-data, solution data, 
and knowledge of the data layout in memory.  


• These details, and most other  of the details of AMR are 
encapsulated in “patch libraries”.   


• Patch libraries describe how data is stored in the quadrant - cell-
centered, node-centered, number of fields, and so on


• Tagging routines, ghost exchange, parallel halo exchange, data 
exchange, interpolating, averaging between grids are all 
encapsulated in a patch library. 


• The patch routines in the ForestClaw core routines virtualize this 
patch functionality.

http://www.forestclaw.org
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Patch libraries
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• Very few routines in the core ForestClaw patch virtual table are 
assigned by functions in the solver (update, boundary conditions, 
auxiliary data)


• Most AMR functionality relies on virtualized functions in specific 
patch library.  


---Tagging cells for coarsening and refinement

---Averaging, interpolating and copying between neighboring 

grids

---Averaging and interpolation after regridding

---Packing communication buffers for parallel exchange

---Re-constituting patch data after re-partitioning. 

---metric terms for mapped grids


• The AMR logic guides when to do the above; patch library 
provides details on how to do the above. 

http://www.forestclaw.org
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struct fclaw2d_patch_vtable

{

    /* Creating/deleting/building patches */

    fclaw2d_patch_new_t                   patch_new;

    fclaw2d_patch_delete_t                patch_delete;

    fclaw2d_patch_build_t                 build;

    fclaw2d_patch_build_from_fine_t       build_from_fine;

   ....

    /* Ghost packing functions (for parallel use) */

    fclaw2d_patch_ghost_packsize_t        ghost_packsize;

    fclaw2d_patch_local_ghost_pack_t      local_ghost_pack;

    fclaw2d_patch_remote_ghost_build_t    remote_ghost_build;

    fclaw2d_patch_remote_ghost_unpack_t   remote_ghost_unpack;

    fclaw2d_patch_remote_ghost_delete_t   remote_ghost_delete; 

    ...

    /* Plus about 40 others */

} 

• These functions must all be defined by specific patch layout.

http://www.forestclaw.org
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void fclaw2d_clawpatch_vtable_initialize(int claw_version) {

fclaw2d_patch_vtable_t *patch_vt = fclaw2d_patch_vt();

    ...

patch_vt->ghost_packsize       = clawpatch_ghost_packsize;

patch_vt->local_ghost_pack     = clawpatch_local_ghost_pack;

patch_vt->remote_ghost_build   = clawpatch_remote_ghost_build;

patch_vt->remote_ghost_unpack  = clawpatch_remote_ghost_unpack;

patch_vt->remote_ghost_delete  = clawpatch_remote_ghost_delete;

  ...

   clawpatch_vt->is_set = 1;

}

• A "clawpatch" used by the Clawpack solvers


• Defines layout as cell-centered, with either fields first or fields last in IJ ordering.


• The patch library defines how to pack and unpack parallel ghost “leaves” - halo 
of leaves around each processor - for parallel communication

http://www.forestclaw.org
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For an explicit time stepping solver : 

• Define required virtual functions

• Define patch object that the solver will interact with

• Example : See fc2d_clawpack4.6 solver library extension

• Example : See fclaw2d_clawpatch patch library extension

http://www.forestclaw.org
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There are a lot of routines!  How to proceed? 

• Step 1 : Wrap your legacy code with a simple function that can be called from 
main.  Get things to compile. This should involve almost no ForestClaw core 
routines (main + few others). 


• Step 2 : Define a patch object with minimal functionality so code on a single 
grid works (nothing adaptive, no ghost exchanges, nothing parallel).  This 
should involve core time stepping routines, but only over a single patch.


• Step 3 : Slowly build in uniform refinement capabilities (only requires copying 
between grids; no averaging or interpolation; no regridding).  Time stepping now 
over multiple patches


• Step 4 : Add mechanisms for ghost cell exchanges between grids at different 
levels.  Add tagging routines so grids can be adaptively refined. 


• Step 5 : Add packing and unpacking routines,  and routines needed to rebuild 
quadrants after reconstruction.  This should parallelize code.


• Step 6 :  Build options package for library so parameters can be set and 
registered in main registry and retrieved when needed. 

http://www.forestclaw.org
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• Coordinating ghost filling in parallel (surprisingly complicated)

• ForestClaw on GPUs (surprisingly easy)

Other topics I have not touch on  :

• How are multiblock meshes set up in ForestClaw?  (torus, cubed 

sphere, brick domains, disks, and so on).  See numerous examples  
in applications/clawpack/advection.


• Option packages for configuring library extensions (.ini files with 
[sections];  all available as command line options) 

http://www.forestclaw.org

