Forestclaw : Programming paradigms

Donna Calhoun (Boise State University)

Carsten Burstedde, Univ. of Bonn, Germany

p4est Summer School
July 20 - 25, 2020
Bonn, Germany (Virtual)

ForestClaw : a PDE layer

ForestClaw is a p4est PDE layer.

e Written mostly in object-oriented C

e (Core routines are agnostic as to
patch data, solvers used, etc.

* Most aspects of the PDE layer,
including type of patch used,
solver, interpolation and averaging,
ghost-filling, can be customized

In the “clawpatch” patch (used for e Support for legacy codes
finite volume solvers), each p4est

quadrant is occupied by a single e Several extensions include

logically Cartesian grid, stored in Clawpack extension, GeoClaw,
contiguous memory, including ghost Ash3d and others.
cells.

e FV solvers and meshes are
available as applications.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

ForestClaw philosophy

 Enable users to port existing Cartesian grid codes to highly scalable, parallel
adaptive environment.

o Starting point : Users are experts in their application and solvers, and have put
much thought and work into developing their codes

 To the greatest extent possible, users should be able to leverage any existing
code they have already developed. Encourage re-use of legacy Cartesian codes.

e [f the programming paradigm is clear enough, users can reason about their
interaction with the code, and can be involved in technical details of getting their
application running.

 Most users are not experts in computer science, nor do they want to be. So
language constructs need to be reasonably simple, i.e. limit use of C++.
Emphasize procedures over objects. Don’t try to invent DSLs that are
meaningless to everyone but the developer.

 Encourage mixed programming, i.e. Fortran+C.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Programming paradigms in ForestClaw

Paradigms
e |terators
e (allbacks

e Virtual tables

 Encapsulated extension libraries for defining how patches get updated, and how
data within a patch is stored.

Extension libraries

A solver library can update a solution on a single grid, or, in the case of an
elliptic solver, return a solution on the mesh hierarchy. Solver libraries are
typically wrappers for legacy code.

o Solvers work together with patch libraries.

 Configuration parameters for solvers and patch types (cell-centered, node
centered, etc) are contained within the library,

« Composibility : Libraries are design not to clash with each other, so multiple
versions of the same library can be compiled together for selection at run-
time.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Solver libraries : time stepping

We have an existing Cartesian grid solver
e Let’'s assume it is an explicit time stepping solver.

 Furthermore, we have a time stepping loop that looks
something like this :

Choose a time step dt,
for k =1, M

Take a single time step
Output results

Compute some diagnostics

 The time step may depend on a CFL constraint, or some other
constraint needed for stability.

 What does this loop look like on an AMR hierarchy?
* Focus on the single time step

Donna Calhoun (Boise State Univ.)

www.forestclaw.org

http://www.forestclaw.org

Solver libraries : time stepping

level 2 level 3 level 5

* For hyperbolic problems, the time step is often limited by cell size.

* Global time stepping : One time step At for all grids.
* Local time stepping : Time step size depends on cell size
* Benefits of local time stepping depend on the problem

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Global time stepping

t+ At

Level 4 Level 5 Level 6 Level 7

e Arrows of the same color indicate recursive calls

* Blue boxes indicate parallel ghost cell exchanges

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Local time stepping

5 LT TEEErry vErrn s 4+ At

Level 4 Level 5 Level 6 Level 7

e Arrows of the same color indicate recursive calls

* Blue boxes indicate parallel ghost cell exchanges

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Time stepping algorithm

Require: Grids at all levels at time ¢t must have valid ghost cells values.
for k = 1 to 2¢maz—fmin do

{*DVAN(?E—SOLUTION(EWW’ G ivance solution on finest level
if multirate thenm
if k< 20mas—t

Find largest integer p > 0 such that 27 divides k.

btime = bmaz — P — 1) Intermediate synchronization

UPDATE_GHOST ({¢;me + 1
end if procedure ADVANCE_SOLUTION(level = ¢, dt_stable = At)

fi 11 grid level ¢ d
CIELR Global time stepping or all grids g on leve o
UPDATE_GHOST (Zmin)

Update solution Q™! = Q" + At F(Q", t,).
end if

end for
end for

if ¢ > /,,;, then
if multirate then
UPDATE_GHOST(Emm). if levels ¢ and ¢ — 1 are time synchronized then
ADVANCE_SOLUTION(¢ — 1,2At)
TIME_INTERPOLATE({ — 1, + 2At)
end if

else
Recursive advance, fO”OWEd ADVANCE_SOLUTION(E — 1, At)
by a time interpolation end if
end if

end procedure

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Single coarse grid time step

double fclaw2d advance_all levels(fclaw2d global t *glob,
double t, double dt) {

initialize timestep counters(glob,&ts counter,t,dt);

for(int nf = 0; nf < ts counter[maxlevel].total steps; nf++)
double maxcfl =

advance_ level(glob,maxlevel,nf,maxcfl,ts counter);

}
double advance level(fclaw2d global t *glob, int level, int nf,

double maxcfl, fclaw2d timestep counters* ts counter) ({
double cfl = fclaw2d_ update single step(glob,level,t,dt);
maxcfl = fmax(maxcfl,cfl);
1if (level > domain->local minlevel) {
double dtc = ts counter[level-1].dt step;
double cfl = fclaw2d update single step(glob,level-1,t,dtc);

maxcfl = fmax(maxcfl,cfl);

 Time step counter manages global/local time stepping

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Iterators and call-back functions

double fclaw2d update single step(fclaw2d global t *glob, int 1level,

double t, double dt) {
/* Store time step, t in struct ss data */

fclaw2d global iterate level(glob, level, cb single step, &ss data);

* A “functional iterator” which loops over all grids on a level.
* |terator interacts with p4est data structure to extract quads.
 The “callback function” is called for each grid.

* This iterator is used in many contexts, not just time stepping

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Iterators and call-back functions

void cb_single step(fclaw2d domain t *domain,
fclaw2d patch t *patch,
int blockno, int patch, void *user) {

/* Extract dt, t, other data from “user struct */
double maxcfl =

fclaw2d patch single step update(glob, patch, blockno, patchno,

t, dt, &ss data->buffer data);
/* Compare maxcfl to global max; store in user data */

e Call-back function called for each patch on processor
 User solver is called from fclaw2d_patch_single_step_update.

 Assumes patch can be updated independently from other patches
(wouldn’t be appropriate for an elliptic solver, for example)

* The patch struct stores solution data in virtualized patch types
(think: void®).

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Virtual tables

double fclaw2d_patch single step update(fclaw2d global t *glob,
fclaw2d patch t *patch,
int blockno, int patchno,
double t, double dt, void* user)

{
fclaw2d patch vtable t *patch vt = fclaw2d patch vt();
FCLAW ASSERT(patch vt->single step update != NULL);
double maxcfl =
patch vt->single step update(glob, patch, blockno, patchno,
t, dt, user);
return maxcfl;
}

 \Virtual tables are structs that store typedef’ed function pointers.
 Facilitates polymorphism.

e Virtual tables are accessible from anywhere; no need to create objects.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Virtual tables

struct fclaw2d_ patch_vtable

{
/* Creating/deleting/building patches */
fclaw2d patch new t patch new;
fclaw2d patch delete t patch delete;

/* Solver functions */

fclaw2d patch initialize t initialize;
fclaw2d patch physical bc t physical bc;
fclaw2d patch single step update t single step update;

o Structs containing virtual tables are closest thing to an “object” in ForestClaw
* Pointers are set by solvers, patch libraries (more on that later), or the user.

* Function pointer signature is hard-wired.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Virtual tables

These functions operate on a single patch only
Encapsulated solver libraries assign values to function pointers.

Users can easily swap in their own customized instances.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Solver libraries

e Explicit solver library only sees data on individual patches.

e Solver library can have its own virtual table.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Solver libraries

Legacy code
called here

 (Call-backs wrap legacy code.

* Patch data stored in an object that knows about data layout on a grid. For
Clawpack, this is stored in a cell-centered “Clawpatch”.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

References on time stepping

 Time stepping on AMR grids is a niche area in a much larger industry
devoted to multi-rate time stepping. (A. Sandu, Virginia Tech, D. Ketcheson
(KAUST) and many others)

 References to early papers out of LBL offer best description of how local
time stepping for AMR is done. See for example, papers by LBL group on
projection methods (Almgren, Bell, Colella and others).

 Most time stepping assumes single step method; multi-step methods are
more challenging (and not widely used by AMR community) when meshes
are dynamically evolving

A few more recent papers describe multi-stage methods, but little is known
about how best to implement additive RK methods on AMR meshes.

e C(Classic problem : Experts in time stepping do not routinely develop ideas in
complex AMR codes. Exception : C. Woodward (LLNL) works closely with
AMReX team.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Patch libraries

e Solver libraries encapsulate details of a specific solver. These
interact with ForestClaw core routines mainly through an update
function.

 To update, however, solvers need patch meta-data, solution data,
and knowledge of the data layout in memory.

e These details, and most other of the details of AMR are
encapsulated in “patch libraries”.

 Patch libraries describe how data is stored in the quadrant - cell-
centered, node-centered, number of fields, and so on

* Tagging routines, ghost exchange, parallel halo exchange, data
exchange, interpolating, averaging between grids are all
encapsulated in a patch library.

 The patch routines in the ForestClaw core routines virtualize this
patch functionality.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Patch libraries

* Very few routines in the core ForestClaw patch virtual table are

assigned by functions in the solver (update, boundary conditions,
auxiliary data)

* Most AMR functionality relies on virtualized functions in specific
patch library.

---Tagging cells for coarsening and refinement

---Averaging, interpolating and copying between neighboring
grids

---Averaging and interpolation after regridding
---Packing communication buffers for parallel exchange
---Re-constituting patch data after re-partitioning.
---metric terms for mapped grids

* The AMR logic guides when to do the above; patch library
provides details on how to do the above.

Donna Calhoun (Boise State Univ.)

www.forestclaw.org

http://www.forestclaw.org

Patch : virtual table

struct fclaw2d patch vtable

{
/* Creating/deleting/building patches */
fclaw2d patch new t patch new;
fclaw2d patch delete t patch delete;
fclaw2d patch build t build;
fclaw2d patch build from fine t build from fine;
/* Ghost packing functions (for parallel use) */
fclaw2d patch ghost packsize t ghost packsize;
fclaw2d patch local ghost pack t local ghost pack;
fclaw2d patch remote ghost build t remote ghost build;
fclaw2d patch remote ghost unpack t remote ghost unpack;
fclaw2d patch remote ghost delete t remote ghost delete;
/* Plus about 40 others */

}

* These functions must all be defined by specific patch layout.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Example : Clawpatch

e A "clawpatch" used by the Clawpack solvers
e Defines layout as cell-centered, with either fields first or fields last in IJ ordering.

 The patch library defines how to pack and unpack parallel ghost “leaves” - halo
of leaves around each processor - for parallel communication

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Building a solver library

For an explicit time stepping solver :
* Define required virtual functions
* Define patch object that the solver will interact with
 Example : See fc2d_clawpack4.6 solver library extension
« Example : See fclaw2d_clawpatch patch library extension

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

Building ForestClaw extensions

There are a lot of routines! How to proceed?

 Step 1: Wrap your legacy code with a simple function that can be called from
main. Get things to compile. This should involve almost no ForestClaw core
routines (main + few others).

o Step 2: Define a patch object with minimal functionality so code on a single
grid works (nothing adaptive, no ghost exchanges, nothing parallel). This
should involve core time stepping routines, but only over a single patch.

o Step 3 : Slowly build in uniform refinement capabilities (only requires copying
between grids; no averaging or interpolation; no regridding). Time stepping now
over multiple patches

o Step 4 : Add mechanisms for ghost cell exchanges between grids at different
levels. Add tagging routines so grids can be adaptively refined.

 Step 5: Add packing and unpacking routines, and routines needed to rebuild
quadrants after reconstruction. This should parallelize code.

o Step 6 : Build options package for library so parameters can be set and
registered in main registry and retrieved when needed.

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

What next?

 (Coordinating ghost filling in parallel (surprisingly complicated)
 ForestClaw on GPUs (surprisingly easy)

Other topics | have not touch on :

« How are multiblock meshes set up in ForestClaw? (torus, cubed
sphere, brick domains, disks, and so on). See numerous examples
in applications/clawpack/advection.

* Option packages for configuring library extensions (.ini files with
[sections]; all available as command line options)

Donna Calhoun (Boise State Univ.) www.forestclaw.org

http://www.forestclaw.org

