
Donna Calhoun (Boise State University)

Block-structured adaptive mesh
refinement for finite volume methods

on Cartesian grids

p4est Summer School
July 20 - 25, 2020

Bonn, Germany (Virtual)

Carsten Burstedde, Univ. of Bonn, Germany

Other collaborators : M. Shih (NYU); S. Aiton (BSU); X. Qin
(Univ. of Washington); R. J. LeVeque (Univ. of Washington);

K. Mandli (Columbia University) and many others.

Donna Calhoun (Boise State Univ.)

Marsha Berger develops AMR
algorithm for Cartesian grids,
Stanford, 1984. R. J.
LeVeque a student at the
same time.

Idaho

My (brief) AMR story

www.forestclaw.org

Seattle

San Francisco

I did my PhD with Randall LeVeque at
the Univ. of Washington, where I first
learned about AMR, the wave
propagation algorithm and ClawPack.

I did a post-doc at the
Courant Institute with Masha
Berger.

I am currently in Boise, Idaho,
where I am an Associate
Professor in the Mathematics
Department at Boise State.

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Original approach (Berger, 1984)

Adaptive Mesh Refinement (AMR)

www.forestclaw.org

Codes : Chombo (LBL), AMRClaw and GeoClaw (UW, NYU) , AMReX (LBL), SAMRAI (LLNL),
AMROC (Univ. of South Hampton); Uintah (Univ. of Utah) and many others

Overlapping patch-based AMR (Structured AMR or SAMR)

See my website for extensive list of patch-based AMR codes

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Original “Adaptive Mesh Refinement”

www.forestclaw.org

• Idea was to leverage existing solvers for Cartesian, finite volume
meshes in a multi-level hierarchy of overlapping Cartesian grid
patches,

• The multi-level mesh dynamically evolved with solution features of
interest,

• Adaptive time stepping included in earliest AMR algorithms,

• Early numerical methods are explicit finite volume solvers for
hyperbolic conservation laws : Piecewise-Parabolic Method (PPM, P.
Colella), wave-propagation algorithms (Clawpack, R. J. LeVeque),
MUSCL schemes (van Leer),

• Original applications included shock hydrodynamics and weather.

M. Berger, 1984 thesis

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Patch-based AMR

www.forestclaw.org

Features :

• Finer patches overlap coarser patches, and the solution exists at each

refinement level

• Buffer cells built into each grid prevent the solution features of interest

from running off the finest levels

• Efficient Berger-Rigoustos algorithm allows for dynamic regridding, done

every 2-3 time steps

• Maintaining conservation (“hanging node problem”) at the coarse/fine

boundary was an early technical challenge.

• Averaging and interpolation (using limiters) used to communicate the

solution between levels; ghost cells used to communicate between grids
at coarse/fine boundaries.

• Adaptive time stepping maintains constant CFL across levels

Advantages :

• Patches can be of arbitrary size (may lead to more flexible meshing)

• Refinement factors can be 2,4,6, 12, 30, ... (not just limited to 2)

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Patch-based AMR

www.forestclaw.org

• 1985 : M. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differential
equations” (from M. Berger’s thesis at Stanford)

• 1989 : M. Berger and P. Colella, “Local adaptive mesh refinement for shock
hydrodynamics” (NYU + Berkeley effort)

• 1987 : W. Skamarock, “Adaptive Grid Refinement for Numerical Weather
Prediction” (another Stanford thesis; uses M. Berger’s code)

• 1991 : M. Berger and I. Rigoustos, “An algorithm for point clustering and grid generation” -
NYU

• 1991 : A. Almgren - “A fast adaptive vortex method using local corrections” (thesis; Berkeley)

• 1998 : M. Berger and R. J. LeVeque publish “Adaptive mesh refinement using wave-propagation
algorithms for hyperbolic systems” - (AMRClaw; University of WA + NYU)

* incomplete and lab biased

Hyperbolic conservation laws with explicit, adaptive time
stepping

1985 1998

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Patch-based AMR

www.forestclaw.org

Elliptic solvers, Navier-Stokes and incompressible Euler equations

• 1996 : D. Martin and K. Cartwright write technical report “Solving Poisson’s Equation using
Adaptive Mesh Refinement (LBL)

• 1997 : L. Howell and J. Bell, “An Adaptive Mesh Projection Method for Viscous
Incompressible Flow” (LBL)

• 1998 : A. Almgren, J. Bell, P. Colella, et al “A Conservative Adaptive Projection Method for
the Variable Density Incompressible Navier-Stokes Equations” (LBL)

• 2000 : D. Martin and P. Colella, “A Cell-Centered Adaptive Projection Method for the
Incompressible Euler Equations” (LBL)

• 2000 : M. Day and J. Bell, “Numerical Simulation of Laminar Reacting Flows with Complex
Chemistry” (LBL)

• 2000 : J. Huang and L. Greengard, “A Fast Direct Solver for Elliptic Partial Differential
Equations on Adaptively Refined Meshes” (NYU)

• 2008 : D. Martin, P. Colella, D. Graves, “A cell-centered adaptive projection method for the
incompressible Navier-Stokes equations in three dimensions”

1996 2008

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Patch-based AMR

www.forestclaw.org

Parallel scaling and performance

• 1999 : C. Rendelman, V. Beckner, et al, “Parallelization of Structured, Hierarchical Adaptive
Mesh Refinement Algorithms” (p-Boxlib)

• 2001 : A. M. Wessink, R. D. Hornung, et al, “Large scale parallel structured AMR calculations
using the SAMRAI framework” (LLNL)

• 2006 : M. Welcome, C. Rendleman, et al, “Performance Characteristics of an Adaptive Mesh
Refinement Calculation on Scalar and Vector Platforms” (LBL)

• 2007 : P. Colella, J. Bell, N. Keen et al, “Performance and Scaling of Locally-Structured Grid
Methods for Partial Differential Equations” (LBL)

• 2007 : T. Wen, J. Su, P. Colella, et al, “An adaptive mesh refinement benchmark for modern
parallel programming languages” (LBL)

• 2010 : J. Luitjens and M. Berzins, “Improving the performance of Uintah: A large-scale
adaptive meshing computational framework” (Univ. of Utah)

• Present : Exascale Computing Project (DOE ECP).

1999 present

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

W. Zhang, A. Almgren, V. Beckner, J. Bell, J. Blaschke, C. Chan, M. Day, B.
Friesen, K. Gott, D. Graves, M. P. Katz, A. Myers, T. Nguyen, A. Nonaka, M.
Rosso, S. Williams, and M. Zingale, AMReX: a framework for block-
structured adaptive mesh refinement, J. Open Source Software, 4 (2019).
https://ccse.lbl.gov/AMReX

Patch-based AMR

www.forestclaw.org

Excellent survey of widely used codes currently available (Chombo,
Cactus, Boxlib (now AMReX), Uintah, FLASH)

A. Dubey, A. Almgren, J. B. Bell, M. Berzins, S. Brandt, G. Bryan, P. Colella, D.
Graves, M. Lijewski, F. Laeffler, B. O’Shea, E. Schnetter, B. V. Straalen,
and K. Weide, “A survey of high level frameworks in block-structured
adaptive mesh refinement packages”, Journal of Parallel and Distributed
Computing, (2014).

AMReX code (used in DOE Exascale Computing Project (ECP))

https://ccse.lbl.gov/AMReX
http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Quadtree/Octree based refinement

www.forestclaw.org

Basilisk (S. Popinet) : One
degree of freedom per leaf

Cell-based refinement Block-based refinement

ForestClaw (D. Calhoun) : Fixed size
grid per leaf

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Quadtree/Octree based refinement

www.forestclaw.org

• 2000 : P. MacNiece, K. Olson et al, “PARAMESH: A parallel adaptive mesh refinement
community toolkit” (FLASH code based on PARAMESH)

• 2002 : R. Tessyier, “Cosmology Hydrodynamics with adaptive mesh refinement. A new high
resolution code called RAMSES” (Lausanne, Switzerland)

• 2004 : U. Ziegler, “An ADI-based adaptive mesh Poisson solver for the MHD code
NIRVANA” (Potsdam, Germany)

• 2005 : J. Dreher and R. Grauer, “Racoon: A parallel mesh-adaptive framework for hyperbolic
conservation laws” (Bochum, Germany)

• 2011 : C. Burstedde, L. Wilcox, O. Ghattas, “p4est: Scalable Algorithms for Parallel Adaptive
Mesh Refinement on Forests of Octrees” (Univ. Texas)

• 2011 : K. Komatsu, T. Soga et al “Parallel processing of the Building-Cube Method on a
GPU platform” (Tohoku, Japan)

• 2016 : S. Popinet. “Basilisk: simple abstractions for octree-adaptive scheme”. SIAM
conference on Parallel Processing for Scientific Computing, April 12-15 2016, Paris, 2016.

“Block-based” and “cell-based” AMR

2000 present

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Quadtree/Octree based refinement

www.forestclaw.org

Advantages of tree-based meshing for AMR :

• Quadtree and octree layouts simplify development of numerical methods

• Space filling curves for load balancing make parallelization much more
straightforward,

• Quad or octrees partition the domain - no overlapping patches

• Leafs of the tree can be occupied by one or more degrees of freedom.

• Potential disadvantage : Refinement is limited to factor of 2

• Elliptic problems may be harder to solve.

A enormous advantage of using tree-based meshes is that libraries
exist that do just the grid management and meshing (this isn’t true
for patch-based codes). p4est is particularly well suited for
scientific computing.

Hybrid idea: Use patch-based algorithms with tree-based code

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

ForestClaw Project

www.forestclaw.org

Features of ForestClaw include :

• Uses the highly scalable p4est dynamic grid management library (C.

Burstedde, Univ. of Bonn, Germany)

• Each leaf of the quadtree contains a fixed, uniform grid,

• Optional multi-rate time stepping strategy,

• Has mapped, multi-block capabilities, (cubed-sphere, for example)

to allow for flexibility in physical domains,

• Modular design gives user flexibility in extending ForestClaw with

Cartesian grid based solvers and packages.

• Uses essentially the same numerical components as patch-based

AMR (e.g. Berger-Oliger-Colella)

A parallel, adaptive library for logically Cartesian, mapped, multi-block domains

Thanks to NSF for supporting this work

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Why use quadtree/octree approach?

www.forestclaw.org

Advantages of the block-based approach using quad/octrees:

• Regular neighbor connectivity means it is easy to implement inter-

grid communication

• Non-overlapping composite grid structure is intuitive. The solution

exists only on one grid, not on several layers of grids.

• Quadtree/octree well suited for emerging hardware - patches can all

be processed simultaneously in CUDA blocks, for example,

• Equal size patches and space-filling curve makes load-balancing

straightforward, without the need for tiling patches.

• Mesh management algorithms can be decentralized

• Very limited meta-data requirements.

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

What is p4est?

www.forestclaw.org

• Highly scalable meshing library based on quadtree/octree
refinement

• Manages a “forest-of-octrees” to allow for geometrically complex
domains.

• Encapsulates AMR meshing details parallel load balancing,
dynamic regridding, neighbor connectivity and so on

• Principle developers are Carsten Burstedde (Univ. of Bonn,
Germany), Lucas Wilcox (NPS, Monterey, CA), Tobin Isaac (Georgia
Tech) and several others. Originated at Univ. of Texas, Austin.

• Key component in three Gordon Bell finalists (2008, 2010, 2012)
and a Gordon Bell prize winner (2015)

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

What does p4est provide?

www.forestclaw.org

• Provides 2:1 balanced quadtree/octree mesh based on tagged
quadrants/octants

• Sets up ghost quadrants/octants for MPI communication

• Transfers communication buffers (packed by the application) to

remote processors

• Handles parallel partitioning and load balancing using a space

filling curve paradigm,

• Provides many tools for nearest neighbor lookups (both face

neighbors and corner neighbors)

• Provides transformations needed to implement multi-block

solvers

• Companion sc library provides utilities for parsing and registering

input options from a configuration file or command library, and
memory management utilities.

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

What p4est does not provide

www.forestclaw.org

• p4est does not handle spatial discretization - user is free to fill
quads/octs with any type of data (FEM/DG/FV/Cartesian grids)

• p4est does not pack and unpack data for exchange between
processors

• p4est provides the user with a coarse quadrant and four refined
quadrants, but it is up to the application to decide how to
construct coarser or finer data from existing fine or coarse data.

• p4est does not impose any refinement criteria - the application
must tag quadrants/octants for coarsening or refinement.

• p4est does not handle any time stepping - all of this must be
supplied by the application

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

A PDE layer for applications

www.forestclaw.org

To use p4est to solve PDEs, a “PDE layer” is needed to handle tasks
not carried out by p4est. This layer should

• Define spatial discretization,

• Manage (possibly adaptive) time stepping

• Supply refinement criteria

• Transfer solution between old and new evolving meshes

• Fill in any quadrant face and corner data at (ghost cell, halo, etc)

needed so quadrants can communicate their data with each other

• Pack and unpack data for parallel exchange and load balancing

• Provide visualization

• Write output

• Post-processing diagnostics

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

How does ForestClaw use p4est?

www.forestclaw.org

In the “clawpatch” patch (used for
finite volume solvers), each p4est
quadrant is occupied by a single
logically Cartesian grid, stored in
contiguous memory, including ghost
cells.

Parallel, multiblock AMR 3

Fig. 2.2. Three 8 ⇥ 8 computational grids shown in levels ` � 1, ` and ` + 1. Solution data
in each grid are stored in contiguous 12⇥ 12 arrays of 82 interior mesh cells (shown in white) and
two layers of ghost cells (shown in shaded regions). The interior regions of the grids in a quadtree
layout do not overlap and so form a partition of the computational domain. Thick lines indicate
quadrant (grid) boundaries.

ghost cell regions, so that a grid with 82 interior cells and two layers of ghost cells
stores solution data in a contiguous array of 12⇥12 mesh cells (with one or more fields
per grid cell). The interiors of computational grids do not overlap, but the ghost cell
region of one grid will overlap with the interior of its face-adjacent and corner adjacent
neighbors. In a ForestClaw, values for the interior dimensions and number of ghost
cell layers are the same for all grids, e↵ectively enforcing a constant 2:1 refinement
ratio between grid levels. The resolution of a particular grid is determined by the size
of the quadrant it occupies, so a grid occupying a level ` quadrant has 2` times the
resolution of the same grid in a level 0 quadrant.

Informally we will refer to “quadrants” and “grids” interchangeably. Fine grids
are those that occupy quadrants at higher levels; coarse grids occupy quadrants at
levels with numeric values closer to 0. A grid can be both a “coarse” grid and a “fine
grid, depending on the context. When describing numerical schemes, it will also be
convenient to refer to the border surrounding the interior grid cells (i.e. the quadrant
boundaries) as the grid boundary, even though this boundary does not enclose the
ghost cell regions. This boundary consists of four edges separating the interior grid
cells from the exterior ghost cell cell regions. And when the context is clear, the “size”
of a grid should be loosely understood to mean the size of the quadrant occupied by
that grid, although there will also be occasion to describe a grid using its (fixed)
interior dimensions, e.g. an 8⇥8 grid. It is also informally understood that the use of
the term “grid” often refers to the contiguous array of solution values associated with
the grid, and not just the geometric metadata needed to describe the grid. In this
context, a “coarse grid solution” or a “fine grid solution” is the solution on a coarser or
finer grid. In the current version of ForestClaw, we store grids (and solution values)
only for those quadrants that make up the final partitioning of the domain. If, during
refinement, a coarse quadrant is subdivided into four finer quadrants, the storage for
the coarse grid solution and any coarse grid metadata is deleted and storage for a finer
grid is allocated in each of the four finer quadrants. See Figure 2.2 for an illustration
of grids and quadrants.

There are several advantages to the tree based refinement. One, the numerical

ForestClaw is a p4est PDE layer.

• Written mostly in object-oriented C

• Core routines are agnostic as to

patch data, solvers used, etc.

• Most aspects of the PDE layer,

including type of patch used,
solver, interpolation and averaging,
ghost-filling, can be customized

• Support for legacy codes

• Several extensions include

Clawpack extension, GeoClaw,
Ash3d and others.

• FV solvers and meshes are
available as applications.

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

Extending ForestClaw

www.forestclaw.org

Patches Extensions

Time stepping, dynamic
grid management, input/
output. Tasks (tagging, building

patches, etc) customized
through use of function pointers
stored in virtual tables

ForestClaw is mostly C; solvers
extension libraries left largely
untouched (in original Fortran)

clawpack4.6

geoclaw

clawpack5

ash3d

Core routines

p4est

ForestClaw

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

ForestClaw - parallel capabilities

www.forestclaw.org

Distributed (MPI) parallelism handled by p4est using space-filling-
curve with Morton ordering

• Good scaling up to 65K cores on using 32x32 blocks on

JUQUEEN (Juelich, Germany) (now de-commissioned)

4 block domain (4 procs) 5-patch disk domain (4 procs)

http://www.forestclaw.org

Donna Calhoun (Boise State Univ.)

ForestClaw - multi block features

www.forestclaw.org

Shockbubble simulation using Clawpack (www.clawpack.org)
extension of ForestClaw on 4x1 multi block domain

http://www.forestclaw.org
http://www.clawpack.org

Donna Calhoun (Boise State Univ.)

ForestClaw - multi block features

www.forestclaw.org

Shockbubble simulation using Clawpack (www.clawpack.org)
extension of ForestClaw on 4x1 multi block domain

Solvers based on finite
volume wave

propagation algorithms
in Clawpack (R. J.

LeVeque)

http://www.forestclaw.org
http://www.clawpack.org

Donna Calhoun (Boise State Univ.)

Applications and extensions

www.forestclaw.org

• Most Clawpack examples are available (scalar advection,
acoustics, Burgers, Euler equations, shallow water wave equations)
(R. J. LeVeque, M. Berger, K. Mandli and many others)

• GeoClaw library extension for depth averaged geophysical flows
(tsunamis, overland flooding, debris flows, landslides, storm
surge). (www.clawpack.org) (M. Shih, D. George, R. J. LeVeque,
M. Berger, and many others)

• Volcanic ash cloud modeling using USGS code Ash3d. (example
of legacy code port.) (H. Schwaiger, DC)

• MAGIC-Forest (J. Snively, C. Burstedde, DC, Embry-Riddle, FL)

• Serre-Green-Naghdi solver (D. Chipman, S. Aiton, DC)

• GPU solvers for Clawpack available (5x-7x speed-up) (M. Shih, S.

Aiton, X. Qin, DC)

http://www.forestclaw.org
http://www.clawpack.org

Donna Calhoun (Boise State Univ.)

Library extensions

www.forestclaw.org

ForestClaw allows for any extension library, so users can easily incorporate their own
solvers into the ForestClaw PDE layer.

Language files blank comment code

C 40 2277 2182 9570
C/C++ Header 38 1055 1977 2574
C++ 1 44 46 225

SUM: 79 3376 4205 12369

Core ForestClaw routines (doesn’t include patch libraries)

Language files blank comment code

Fortran 77 17 260 592 1472
C/C++ Header 4 144 103 425
C++ 1 152 50 421
C 1 55 30 142

SUM: 23 611 775 2460

Clawpack 4.x library routines (www.clawpack.org)

http://www.forestclaw.org
http://www.clawpack.org

Donna Calhoun (Boise State Univ.)

Volcanic ash transport

www.forestclaw.org

Volcanic ash transport using Ash3d (H. Schwaiger, USGS) extension of ForestClaw

3

Figure 1. Example model grids illustrated in Google EarthTM1. (a) Latitude-longitude grid over the North Atlantic. (b)
Projected grid over Alaska. (c) Close-up of cells over Redoubt volcano, showing a vertical distribution of ash
specified by equation (1), using a shape factor (k) of 4.

1Google Earth TM images are copyrighted by Google (2011), Europa Technologies (2011), Tele Atlas, and
Geocenter Consulting. Use of these and other Google EarthTM images in this document is consistent with
usage allowed by Google (Google, 2013) and do not require explicit permission for publication.

Extend existing
volcanic ash
transport model with
a parallel, adaptive
capabilities

Original code : 2 hours

Parallel, Adaptive:

15 minutes

http://www.forestclaw.org

2011 Tohoku tsunami (GeoClaw extension)

% Zoom Frame = 2
% axis([134.6060, 164.9044, 28.2413, 45.3327])

2011 Tohoku tsunami

% Zoom 1 (Frame = 17)
% axis([201.3305, 206.7376, 18.8768, 21.9269]);

2011 Tohoku tsunami

% Zoom 2 (Frame 17)
% axis([202.2093, 204.2401, 20.3161, 21.4617])

% Zoom 3 (Frame 17)
% axis([202.9598, 203.7538, 20.6753, 21.1232]);

% Zoom 4 (Frame 17)
% axis([203.4689, 203.6265, 20.8651, 20.9540]);

2011 Tohoku tsunami

% Zoom 5 (Frame 18)
% axis([203.5126, 203.5443, 20.8883, 20.9062]);

2011 Tohoku tsunami

u-velocity (ForestClaw)

time shift=5min

v-velocity (ForestClaw)

time shift=5min

Surface height (ForestClaw)

Donna Calhoun (Boise State Univ.)

Using ForestClaw

www.forestclaw.org

• Github site : www.github.com/ForestClaw

• See the wiki for installation instructions and examples

• Most users find it fairly easy to get basic ForestClaw examples

running.

Topics that could be discussed further :

• Wave propagation algorithm (Clawpack)

• Building your own library extension?

• Using mapped, multi-block features?

• Parallel features and GPU extension?

• GeoClaw applications?

• Refinement? Adaptive time stepping?

http://www.forestclaw.org
http://www.github.com/ForestClaw
https://github.com/ForestClaw/forestclaw/wiki

